Canonical polyadic decomposition of third-order semi-nonnegative semi-symmetric tensors using LU and QR matrix factorizations
نویسندگان
چکیده
Semi-symmetric three-way arrays are essential tools in blind source separation (BSS) particularly in independent component analysis (ICA). These arrays can be built by resorting to higher order statistics of the data. The canonical polyadic (CP) decomposition of such semi-symmetric three-way arrays allows us to identify the so-called mixing matrix, which contains the information about the intensities of some latent source signals present in the observation channels. In addition, in many applications, such as the magnetic resonance spectroscopy (MRS), the columns of the mixing matrix are viewed as relative concentrations of the spectra of the chemical components. Therefore, the two loading matrices of the three-way array, which are equal to the mixing matrix, are nonnegative. Most existing CP algorithms handle the symmetry and the nonnegativity separately. Up to now, very few of them consider both the semi-nonnegativity and the semi-symmetry structure of the three-way array. Nevertheless, like all the methods based on line search, trust region strategies, and alternating optimization, they appear to be dependent on initialization, requiring in practice a multi-initialization procedure. In order to overcome this drawback, we propose two new methods, called JDLU and JD + QR, to solve the problem of CP decomposition of semi-nonnegative semi-symmetric three-way arrays. Firstly, we rewrite the constrained optimization problem as an unconstrained one. In fact, the nonnegativity constraint of the two symmetric modes is ensured by means of a square change of variable. Secondly, a Jacobi-like optimization procedure is adopted because of its good convergence property. More precisely, the two new methods use LU and QR matrix factorizations, respectively, which consist in formulating high-dimensional optimization problems into several sequential polynomial and rational subproblems. By using both LU and QR matrix factorizations, we aim at studying the influence of the used matrix factorization. Numerical experiments on simulated arrays emphasize the advantages of the proposed methods especially the one based on LU factorization, in the presence of high-variance model error and of degeneracies such as bottlenecks. A BSS application on MRS data confirms the validity and improvement of the proposed methods.
منابع مشابه
Canonical polyadic decomposition of 3rd order semi-nonnegative semi-symmetric tensors using LU and QR matrix factorizations
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...
متن کاملLine search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors
Numerical solutions are proposed to fit the CanDecomp/ParaFac (CP) model of real three-way arrays, when the latter are both nonnegative and symmetric in two modes. In other words, a seminonnegative INDSCAL analysis is performed. The nonnegativity constraint is circumvented by means of changes of variable into squares, leading to an unconstrained problem. In addition, two globalization strategie...
متن کاملA Multiscale Approach for Nonnegative Matrix Factorization with Applications to Image Classification
We use a multiscale approach to reduce the time to produce the nonnegative matrix factorization (NMF) of a matrix A, that is, A ≈ WH. We also investigate QR factorization as a method for initializing W during the iterative process for producing the nonnegative matrix factorization of A. Finally, we use our approach to produce nonnegative matrix factorizations for classifying images and compare ...
متن کاملA regularized nonnegative canonical polyadic decomposition algorithm with preprocessing for 3D fluorescence spectroscopy
We consider blind source separation in chemical analysis focussing on the 3D fluorescence spectroscopy framework. We present an alternative method to process the Fluorescence Excitation-Emission Matrices (FEEM): first, a preprocessing is applied to eliminate the Raman and Rayleigh scattering peaks that clutter the FEEM. To improve its robustness versus possible improper settings, we suggest to ...
متن کاملComputing the polyadic decomposition of nonnegative third order tensors
Computing the minimal polyadic decomposition (also often referred to as canonical decomposition, or sometimes Parafac) amounts to finding the global minimum of a coercive polynomial in many variables. In the case of arrays with nonnegative entries, the low-rank approximation problem is well posed. In addition, due to the large dimension of the problem, the decomposition can be rather efficientl...
متن کامل